skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liao, Yi-Hong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Measuring speed is a critical factor to reduce motion artifacts for dynamic scene capture. Phase-shifting methods have the advantage of providing high-accuracy and dense 3D point clouds, but the phase unwrapping process affects the measurement speed. This paper presents an absolute phase unwrapping method capable of using only three speckle-embedded phase-shifted patterns for high-speed three-dimensional (3D) shape measurement on a single-camera, single-projector structured light system. The proposed method obtains the wrapped phase of the object from the speckle-embedded three-step phase-shifted patterns. Next, it utilizes the Semi-Global Matching (SGM) algorithm to establish the coarse correspondence between the image of the object with the embedded speckle pattern and the pre-obtained image of a flat surface with the same embedded speckle pattern. Then, a computational framework uses the coarse correspondence information to determine the fringe order pixel by pixel. The experimental results demonstrated that the proposed method can achieve high-speed and high-quality 3D measurements of complex scenes. 
    more » « less
  2. Zhang, Song; Harding, Kevin G.; Li, Beiwen; Hyun, Jae-Sang (Ed.)
  3. This paper presents an absolute phase unwrapping method for high-speed three-dimensional (3D) shape measurement. This method uses three phase-shifted patterns and one binary random pattern on a single-camera, single-projector structured light system. We calculate the wrapped phase from phase-shifted images and determine the coarse correspondence through the digital image correlation (DIC) between the captured binary random pattern of the object and the pre-captured binary random pattern of a flat surface. We then developed a computational framework to determine fringe order number pixel by pixel using the coarse correspondence information. Since only one additional pattern is used, the proposed method can be used for high-speed 3D shape measurement. Experimental results successfully demonstrated that the proposed method can achieve high-speed and high-quality measurement of complex scenes. 
    more » « less